

Great Lakes Watershed Ecological Sustainability Strategy

Wendy Larson, LimnoTech

Broad Questions Addressed by GLWESS Project

- How much, and where?
 - Determine relationships between BMP and environmental improvement (Dose-response curve)
 - Define success and set environmental goals
- How to motivate at scale?
 - Create new reward for performance transactions to achieve the goals

GLWESS Project Watersheds

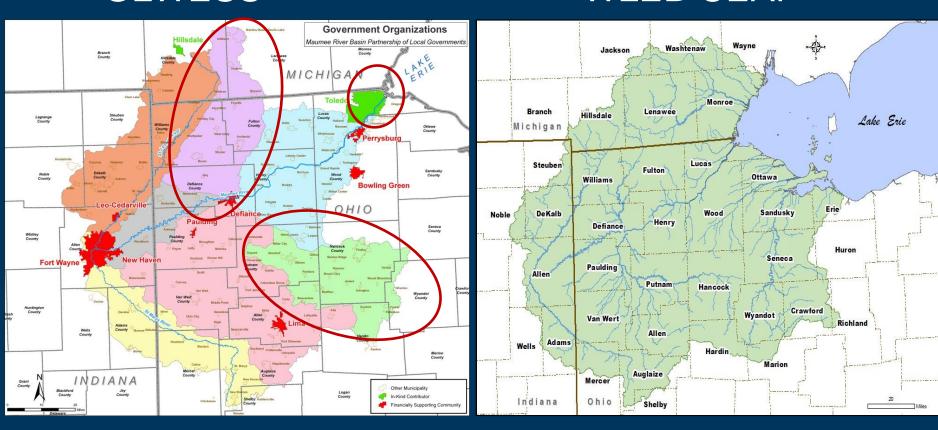
- Paw Paw, Saginaw, Maumee
- Forecast the amount of BMPs needed to achieve different flow, water quality, and biological conditions
- Develop and test new approaches and transactions for achieving environmental goals

Ecological Endpoints for Valuing Transactions

- Impact of degraded stream habitat, altered hydrology, and water quality on fish and macroinvertebrate indicators
- Watershed export of sediment and nutrients:
 - Phosphorus (P), especially soluble reactive P
 - Nitrogen (N)
 - Suspended solids
- Eutrophication & sedimentation impacts in Western Lake Erie Basin (WLEB):
 - Harmful algal blooms (HABs)
 - Nuisance benthic algae in WLEB
 - High sedimentation rates in Federal navigation channel

Options for Society to Reach BMP Goals

- Voluntary (with outreach)
- Governmental Incentives (Farm Bill Programs)
- Regulation
- Market-based
- Combinations of above


Transactions and Approaches We Are Testing

- Agricultural Drainage Management
- Reverse Auctions
- Certification
 - Company or Product
 - Farmer
 - Agricultural Retail

Comparison of Project Focal Areas

GLWESS

WLEB CEAP

Comparison of Tasks and Objectives

GLWESS	WLEB CEAP
Develop communication plan & establish advisory panel	Develop communication plan & establish advisory panel
 Develop science/models to support transactions Watershed (not in WLEB) Coastal (sediment & algae) Develop SWAT model for Maumee Link to WLEE model Create user-friendly version of linked model Develop downscaled SWAT models for Tiffin & Blanchard 	Develop downscaled SWAT model for entire project area Develop ecological models that predict riverine biological endpoints from SWAT and other variables
Evaluate transactional frameworksAg drain managementFarmer certificationAg retailer certification	Develop conservation scenarios for select subwatersheds and predict changes in water quality, quantity and biological endpoints

GLWESS/LimnoTech Contributions

- Enhanced credibility, unique expertise on sediment and nutrient fate and transport in rivers
- Review and advice on model parameterization and calibration
 - On basis of direct knowledge of activities and fine scale databases in the Tiffin and Blanchard watershed
- Code and documentation for the ephemeral gully transport sub-model (SWAT 2009 for Tiffin)
- Fine scale models of the Tiffin & Blanchard watersheds
- WinModel visualization and analysis SWAT user interface
 - If desired, for use in developing and applying the Maumee watershed model.

WLEB CEAP, PostDoc, ARS Contributions

- ARS team developed the SWAT model and bring knowledge and prestige to both projects
- CEAP Cropland Team and PostDoc would have primary responsibility for developing the downscaled (NHD+) SWAT model for the entire WLEB watershed.
 - Work closely with LimnoTech to calibrate model
- Support should significantly improve the accuracy of the downscaled SWAT model by:
 - Incorporating tile drainage into model set up
 - Conducting spatially distributed calibration with SPARROW and field data
 - Incorporating historic land cover to provide an additional baseline
 - Incorporating potential future climate scenarios